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Flow induced by the presence of a 
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The Stokes creeping flow, induced by the passage of a uniform current parallel 
to the axis of a stationary non-conducting ellipsoid of revolution in an incom- 
pressible viscous fluid occupying, apart from the ellipsoidal region, the whole 
space, is investigated. The magnetic field, which is due to the distortion of the 
uniform current by the ellipsoid, is zero all over the surface of the ellipsoid. 
The induced flow field is symmetric with respect to the axis, and also with respect 
to a plane through the centre perpendicular to the axis of the ellipsoid. The case 
of a non-conducting circular disk, with its plane perpendicular to the direction 
of the undisturbed current, is deduced from that of a planetary ellipsoid. 

1. Introduction 
When a conducting fluid is permeated by a uniform current, which is distorted 

by the fact that different fluid regions have different conductivities, a magnetic 
field is set up. The resultant Lorentz force is, in general, rotational and cannot 
be balanced by a hydrostatic pressure and thus the fluid is set in motion. If the 
conducting fluid possesses a general motion, then the Lorentz force, due to the 
passage of a current and the associated magnetic field, will modify the original 
flow field. 

The steady-state flow field, set up when a uniform current is passed through 
a conducting infinite fluid, in the presence of a non-conducting sphere, was 
investigated by Chow (1966). Here we extend this investigation. First, we consider 
the equations governing the steady state flow set up when the uniform current 
in an infinite fluid is distorted by the presence of an axially symmetric body 
having its axis along the direction of the undisturbed current. We then apply 
our analysis to  the cases when the symmetric body is an ovary and a planetary 
ellipsoid. 

Magnetohydrodynamic problems are in general very difficult and simplifying 
approximations are used in order to obtain mathematical solutions to these 
problems. Thus, the effect of a strong flow field on a relatively weak electro- 
magnetic field may be found by assuming that the effect of the latter on the 
former is negligible. Similarly, an approximation to the effect of a strong electro- 
magnetic field on a relatively weak flow field may be obtained, by assuming that 
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the former is unaffected by the latter. Here we assume that the flow field is weak 
and use the second approximation. We also neglect the inertia terms from the 
momentum equation, that is, we obtain a Stokes solution, which is not very 
accurate far away from the body. 

2. General equations of the problem 
We consider an infinite incompressible viscous conducting fluid, carrying a 

uniform current J, which is disturbed by the presence of an axially symmetric 
body that has its axis parallel to the direction of the current at  infinity. The 
induced velocity is small and if we assume that its effect on the electromagnetic 
field is negligible, that is, if we assume that the currents are driven by the electric 
field, in the steady state, the electric current J and magnetic field B are connected 
by the equations V x B = 4nJ, (1) 

V x J = O .  (2) 

The boundary conditions are that at  the surface of the body the normal com- 
ponent of the current; is zero and at infinity J tends to J,. Thus, the electric 
current satisfies the same equations and boundary conditions as the velocity 
field of an inviscid incompressible fluid past a fixed solid body. 

We use cylindrical polar co-ordinates ( r ,  8, z) with the x axis along the axis 
of symmetry of the body and, as with inviscid flow, make use of a current stream 
function $ ,  such that 

(3) 

From the symmetry of the problem it follows that the magnetic field lines are 
circles about the axis of symmetry; by using (1) and (3) we find 

B = 6 $ l ( r , N r ,  (4) 

and hence 

If we assume that the induced flow is slow enough, so that the inertia forces 
are negligible, the momentum equation in the steady state is 

V ~ + ~ , V X V X V - J X X = O ,  (6) 

wherep is the fluid pressure, V the fluid velocity and p,, the coefficient of viscosity. 
If we express the velocity in terms of the stream function $2 by 

v = ( -  ajrax, 0, a/rar) $2 (7) 

and take the curl of (6) we find that and $2 are connected by the equation 

where 



Plow induced by a non-conducting spheroid in a current 131 

For any particular axisymmetric configuration we must first find $r, that is, 
solve the equation 

and then solve (8) for $2. 

The velocity field may also be obtained as follows: Take the divergence of (6) 
and solve the resulting Poisson equation for p .  Since V x V x V = -V2V, (6) 
shows that each velocity component (use Cartesian co-ordinates for this purpose) 
can be obtained by solving Poisson's equation. 

If we do a similar analysis for two-dimensional configurations, we find that 
the force J x B is irrotational, that is, it simply readjusts the fluid pressure and 
does not induce any flow. 

D2$, = 0 

3. Flow around an ovary ellipsoid 
Let a and c be the polar and equatorial radii, e the eccentricity of a meridional 

cross-section, and the x axis the axis of the ellipsoid. We make use of the 
transformation 

(9) 

where ,u = cos 8, c = cosh q and K is a constant. Thus our ellipsoid is given by 
11 = yo or 5 = c0, where 

x = KcosOcoshq = K&; r = Ksindsinhq = ~ ( l - p 2 ) 4 ( [ 2 -  l)t, 

K = ae, c0 = 1/e, K ( [ $ -  1)t = c. (10) 

At infinity let the impressed current be parallel to the x axis and have intensity 
J,. The current stream function, obtained from formulas given by Lamb (1932)) is 

where Bo= 2 log ~ -___ /[ (2) 1""2] 

On making use of (9) and substituting the value of $1 given by (1 1) into (8) we 
obtain 

Now we note the following property of the Legendre polynomial, P,(p), of 

(13) 
degree n (1 - p2) [( 1 -p2) PA]" = - n(n + 1)  ( 1 -p2) 

and therefore we construct a solution by setting 

where A is an arbitrary constant. ,u( 1 -p2) is one of the solutions of the comple- 
mentary function of (12); it  is found convenient to separate A from fo here. In  

9-2 
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the above and subsequent expressions, dashes denote differentiation with respect 
to the obvious variable p or < as the case may be. 

If we now substitute (14) into (12), after some manipulation we obtain the 
following set of equat'ions : 

and A ,  = 47~J;B,~~/7p,. 

Thus we must first solve (17) and then (15) and (16). The boundary conditions 
are that the velocity vanishes on the ellipsoid, that is, 

A +fo(t;o) = f X 0 )  = fdL-0) = f;(co) = 0 (18) 

and the velocity is finite at  infinity. This latter boundary condition is somewhat 
unrealistic and is derived from the principle of minimum singularity (Van Dyke 
1964). The reason for the non-vanishing of the velocity field at  infinity is due to 
the use of Stokes' approximation, and the neglect of the inertia terms from the 
momentum equation. If we take the curl of the momentum equation, retaining 
the inertia terms and using the J x B obtained here, and do an order of magnitude 
analysis we find that at a la.rge distance L from the origin 

V 2  47rJiB,~5 
PDN L3 ' 

Therefore for large L 

and tends to zero as L tends to infinity. For the case of a uniform current carrying 
fluid streaming past a sphere, Chow & Billings (1967) retained inertia terms and 
carried out an analysis using the Stokes and Oseen expansions near and far from 
the body, respectively. They matched their expansions, using the methods 
developed by Kaplun & Lagerstrom (1957) and Proudman & Pearson (1957), 
and found that a t  a large distance L from the centre of the sphere the effect of the 
electromagnetic field on the induced velocity is O(l/L). 

Since the Stokes approximation is inaccurate at large distances from the body, 
our solution is valid only for distances not too far from the ellipsoid. 

If we now note that g(c2- 1 )  and c(c2- 1) (7g2-3) are solutions of the comple- 
mentary functions of (15) and (16), respectively, we are able to obtain the solu- 
tions of (17), (15) and (16) by direct integration. 

The solution of (17) is 
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where C is an arbitrary constant, and the other constant of integration has been 
set equal to zero. 

After lengthy integrations by parts we find that the solutions of (15) and (1 6) 

652-4-3<(<2-1)I~g 
21g2- 13 are 

- 5 { 5(c4 - 1) log2 (- 5+ 1 ) - (c2 - 1) (4c2 + 3) log 
16 5- 1 

35(g2 - I)  (1 - 5c2) log (-) 5+ 1 + 2Cz ( 15c2 - 13)) 
16 5- 1 

5- 1 

The constants C, C, and C, in the above equations and A in (14) are obtained from 
the boundary conditions (18). In  (20) 1) belongs to the comple- 
mentary function; the constant - $B, was suitably chosen so that the velocity 
at  infinity is finite. 

As e approaches 1, co tends to 1 and the ellipsoid tends to become an elongated 
rod. In  this case B, tends to zero and thus the electromagnetic force and its flow 
effects become negligible, as expected. 

As noted by Chow (1966) for a sphere, the force J x B and the induced creeping 
flow are symmetrical, not only with respect to the x axis, but also with respect to 
the plane 8 = &r, and therefore the induced drag effects on the ellipsoid are zero. 

Stokes streaming flow of a viscous fluid with constant low velocity U at infinity, 
parallel to the axis of a fixed ovary ellipsoid, is discussed by Happel & Brenner 
(1965). The stream function $, for such a flow, streaming parallel to the positive 
2: axis at  infinity, is given by 

If the fluid is conducting and we impose a uniform current J, parallel to the 
x axis a t  infinity, since U is small we may again neglect the effect of the flow field 
on the electromagnetic field. The total flow field is then due to the superposition 
of the uniform streaming flow and the electromagnetically induced flow and 
therefore its stream function $ is given by 

$ = $0+$2. (23) 
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FIQURE 1. Streamlines (flow lines) in the upper half plane of a meridian section of an 
ovary ellipsoid for various values of $. - , $ = $ o ;  ---, $ = $h2. e = 0.75. X = %/a, 
Y = y/a. The uniform stream or current is directed from the negative to the positive 
X axis. 

Y l  
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X 
FIGURE 2. Flow lines in the upper half plane of a meridian section of an ovary ellipsoid 
for various values of Y. - , for the case K = 6 and - - -, for the case K = 10. e = 0.75. 
X = x/a, Y = y/a. The uniform stream and current are directed from the negative to 
the positive X axis. 
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If we now non-dimensionalize the stream functions by letting 
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$ = +Ua2uP, $o = &a2Yo and $2 = aUa2KYP2, 

where K = 16na3Jg/(7p0U), (23) becomes 

Y = Y0+KY2. 

Figure 1 shows streamlines (flow lines) $ equals $o and $ equals lif2 for various 
values of $ in the upper half meridian section of an ellipsoid of revolution. The 
eccentricity of the section is 0.75. 

From figure 1 or equations (14), (22) and (23) it follows that if the streaming 
fluid carries a sufficiently strong current, there will be separation and flow 
reversal around the wake behind the ellipsoid. This was first noted by Chow 
(1966) for the case of a spherical obstacle. Flow lines for the ellipsoid of figure 1, 
representing various values of Y, when K is 6 and K is 10 are shown in figure 2. 
When K is 10 there is separation and flow reversal. 
Our computations show that as e increases from zero to one, Yz becomes less 

significant relative to Yo, and a larger value of K is required to make Y zero and 
negative, that is, as the ellipsoid becomes more elongated, we need a stronger 
current in order to cause separation and flow reversal. 

4. Flow around a planetary ellipsoid 
We again let a and c denote the polar and equatorial radii and e the eccentricity 

of a meridian section of the ellipsoid. The axis of the ellipsoid coincides with the 
x axis. We now use the transformation 

x = Kcosesinhq = K&; r = Ksinecoshq = ~(l-- ,u~)k(C2+1)4,  

where ,u = cose and 5 = sinh7. Then the ellipsoid is given by q = qo or C = 6, 
where 

At infinity the impressed current is parallel to the axis of the ellipsoid and has 
intensity J,. In  terms of these quantities (see Lamb 1932) 

a =  KC^, c = K(<:+ I)*, e = (Ct+  I)-*. 

where B, = I/[e(l-e2)&-sin-le]. 

When we do an analysis similar to that of the last section we find 

$2 = [so(C)+A +(7p2- 3)s1(C)l,u~l-P2), (25) 

where 

and 

Here A, = ~TJ;B,K~/~,U,. 
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The solution of (28) is 

G = -Al[ i+C{3c2+2-3c(c2+ l ) ~ o t - ~ c )  

+3B1{c-(2c2+ l ) c ~ t - ' < + c ( < ~ +  1) ( c~ t - l c )~ ) ] ,  (29) 

where C is an arbitrary constant, and the other constant of integration is set 
equal to zero. The solutions of ( 2 6 )  and ( 2 7 )  are given by 

and 

g1 = Al[& + C2{210<4 + 230g2 + 32 - 30<(c2 + 1) (7c2 + 3 )  cotp1 c} 
+&C(3c(c2+1)(5<2+ l ) ~ o t - l < - c ~ ( 1 5 < ~ +  13)) 

+&B1{c(c2+ 1) (9c2+5) (cOt-1c)2-2(c2+ 1) (9C2+2) cot-'c+<(9c2+8))]. 
(31 )  

As with the ovary ellipsoid, A ,  C, Cl and C, are determined from the vanishing 
of the fluid velocity on the ellipsoid, namely 

A +go(<,, = S X O )  = SlKO) = d(Q) = 0. 

The stream function $,, corresponding to a streaming flow past the ellipsoid, 
regarded as fixed, with the general velocity U in the x direction, is (Happel & 

Now we set 

$, = iUc2'F0, q9, = +Uc2KY, and $ = iUc2Y.", 

where K = 1 6 ~ ~ 3 J i  Bl/(  7 Up,) 

and obtain ir = Y,+KY,. 

Figure 3 shows flow lines in the upper half plane of a meridian section of a 

When e is 1 we have the case of a circular disk with its plane perpendiculm 
planetary ellipsoid for the cases when K equals 2 and K equals 5. 

to the direction of the undisturbed stream at infinity. For this case 

84 - 1 7n2 c , GI2=-+ 
7A,(n2 - 12) - 48 - 7 ~ '  -- 

" 4 0 '  
A = - -  

18n2 ' 6n2 ' ' - 36m2 

At the edge of the disk the current, like the fluid velocity in the case of inviscid 
flow, is infinite. The Lorentz force is zero all over the surface of the disk except 
at  the edge, where it is indeterminate. Flow lines for the case of a disk broadside 
onto the undisturbed stream are shown in figure 4. 

The case of streaming flow past'a spherical obstacle is deduced from that of 
an ellipsoid, planetary or ovary, by letting e tend to zero and 6 t o  infinity so that 
e c  equals the distance r from the centre of the sphere. 
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FIGURE 3. Flow lines in the upper half plane of a meridian section of a planetary ellipsoid 
for various values of Y. - , for the case K = 2 and - - -, for the case K = 5. e = 0.75, 
X = x/c ,  Y = y/c. The uniform stream and current are directed from the negative to the 
positive X axis. 
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FIGURE 4. Flow lines in a half plane through the axis, which coincides with the X axis, 
of a disk for various values of '3'. - , for the case K = 2 and - - -, for the case K = 5. 
X = x/c .  Y = y/c..The uniform stream and current are directed from the negative to the 
positive X axis. 
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Our computations show that, as the eccentricity of a planetary ellipsoid 
increases, the magnitude of Y, relative to that of Yo extremely close to the 
ellipsoid increases, and this hastens flow separation from the wake side of the 
ellipsoid, but everywhere else it decreases. From this and our remarks about the 
ovary ellipsoid when its eccentricity increases, it follows that a given current 
intensity will produce the maximum general flow distortion in the case of a stream 
past a spherical obstacle. 

R E F E R E N C E S  

CHOW, C.-Y. 1966 Phys. Fluids, 9, 933. 
CHOW, C.-Y. & BILLINGS, D. F. 1967 Phys. Fluids, 10, 871. 
HAPPEL, J. & BRENNER, H. 1965 Low Reynolds Number Hydrodynamics. Englemood 

Cliffs, N.J.: Prentice Hall. 
KAPLUN, S. & LAGFERSTROM, P. A. 1957 J. Math. Mech. 6, 585. 
LAMB, H. 1932 Hydrodynamics. Cambridge University Press. 
PROUDMAN, I. I% PEARSON, J. R. A. 1957 J. Fluid Mech. 2, 237. 
VAN DYKE, M. D. 1964 Perturbation Methods in Fluid Mechanics. New York: Academic. 


